Hírolvasó

Matthew Garrett: Integrating Linux with Okta Device Trust

2 év 7 hónap óta
I've written about bearer tokens and how much pain they cause me before, but sadly wishing for a better world doesn't make it happen so I'm making do with what's available. Okta has a feature called Device Trust which allows to you configure access control policies that prevent people obtaining tokens unless they're using a trusted device. This doesn't actually bind the tokens to the hardware in any way, so if a device is compromised or if a user is untrustworthy this doesn't prevent the token ending up on an unmonitored system with no security policies. But it's an incremental improvement, other than the fact that for desktop it's only supported on Windows and MacOS, which really doesn't line up well with my interests.

Obviously there's nothing fundamentally magic about these platforms, so it seemed fairly likely that it would be possible to make this work elsewhere. I spent a while staring at the implementation using Charles Proxy and the Chrome developer tools network tab and had worked out a lot, and then Okta published a paper describing a lot of what I'd just laboriously figured out. But it did also help clear up some points of confusion and clarified some design choices. I'm not going to give a full description of the details (with luck there'll be code shared for that before too long), but here's an outline of how all of this works. Also, to be clear, I'm only going to talk about the desktop support here - mobile is a bunch of related but distinct things that I haven't looked at in detail yet.

Okta's Device Trust (as officially supported) relies on Okta Verify, a local agent. When initially installed, Verify authenticates as the user, obtains a token with a scope that allows it to manage devices, and then registers the user's computer as an additional MFA factor. This involves it generating a JWT that embeds a number of custom claims about the device and its state, including things like the serial number. This JWT is signed with a locally generated (and hardware-backed, using a TPM or Secure Enclave) key, which allows Okta to determine that any future updates from a device claiming the same identity are genuinely from the same device (you could construct an update with a spoofed serial number, but you can't copy the key out of a TPM so you can't sign it appropriately). This is sufficient to get a device registered with Okta, at which point it can be used with Fastpass, Okta's hardware-backed MFA mechanism.

As outlined in the aforementioned deep dive paper, Fastpass is implemented via multiple mechanisms. I'm going to focus on the loopback one, since it's the one that has the strongest security properties. In this mode, Verify listens on one of a list of 10 or so ports on localhost. When you hit the Okta signin widget, choosing Fastpass triggers the widget into hitting each of these ports in turn until it finds one that speaks Fastpass and then submits a challenge to it (along with the URL that's making the request). Verify then constructs a response that includes the challenge and signs it with the hardware-backed key, along with information about whether this was done automatically or whether it included forcing the user to prove their presence. Verify then submits this back to Okta, and if that checks out Okta completes the authentication.

Doing this via loopback from the browser has a bunch of nice properties, primarily around the browser providing information about which site triggered the request. This means the Verify agent can make a decision about whether to submit something there (ie, if a fake login widget requests your creds, the agent will ignore it), and also allows the issued token to be cross-checked against the site that requested it (eg, if g1thub.com requests a token that's valid for github.com, that's a red flag). It's not quite at the same level as a hardware WebAuthn token, but it has many of the anti-phishing properties.

But none of this actually validates the device identity! The entire registration process is up to the client, and clients are in a position to lie. Someone could simply reimplement Verify to lie about, say, a device serial number when registering, and there'd be no proof to the contrary. Thankfully there's another level to this to provide stronger assurances. Okta allows you to provide a CA root[1]. When Okta issues a Fastpass challenge to a device the challenge includes a list of the trusted CAs. If a client has a certificate that chains back to that, it can embed an additional JWT in the auth JWT, this one containing the certificate and signed with the certificate's private key. This binds the CA-issued identity to the Fastpass validation, and causes the device to start appearing as "Managed" in the Okta device management UI. At that point you can configure policy to restrict various apps to managed devices, ensuring that users are only able to get tokens if they're using a device you've previously issued a certificate to.

I've managed to get Linux tooling working with this, though there's still a few drawbacks. The main issue is that the API only allows you to register devices that declare themselves as Windows or MacOS, followed by the login system sniffing browser user agent and only offering Fastpass if you're on one of the officially supported platforms. This can be worked around with an extension that spoofs user agent specifically on the login page, but that's still going to result in devices being logged as a non-Linux OS which makes interpreting the logs more difficult. There's also no ability to choose which bits of device state you log: there's a couple of existing integrations, and otherwise a fixed set of parameters that are reported. It'd be lovely to be able to log arbitrary material and make policy decisions based on that.

This also doesn't help with ChromeOS. There's no real way to automatically launch something that's bound to localhost (you could probably make this work using Crostini but there's no way to launch a Crostini app at login), and access to hardware-backed keys is kind of a complicated topic in ChromeOS for privacy reasons. I haven't tried this yet, but I think using an enterprise force-installed extension and the chrome.enterprise.platformKeys API to obtain a device identity cert and then intercepting requests to the appropriate port range on localhost ought to be enough to do that? But I've literally never written any Javascript so I don't know. Okta supports falling back from the loopback protocol to calling a custom URI scheme, but once you allow that you're also losing a bunch of the phishing protection, so I'd prefer not to take that approach.

Like I said, none of this prevents exfiltration of bearer tokens once they've been issued, and there's still a lot of ecosystem work to do there. But ensuring that tokens can't be issued to unmanaged machines in the first place is still a step forwards, and with luck we'll be able to make use of this on Linux systems without relying on proprietary client-side tooling.

(Time taken to code this implementation: about two days, and under 1000 lines of new code. Time taken to figure out what the fuck to write: rather a lot longer)

[1] There's also support for having Okta issue certificates, but then you're kind of back to the "How do I know this is my device" situation

comments

[$] Memory-management short topics: page-table sharing and working sets

2 év 7 hónap óta
The kernel's memory-management developers have been busy before and during the holidays; the result is a number of patch sets making significant changes to that subsystem. It is time for a quick look at three of those projects. Two of them aim to increase the sharing of page tables between processes, while the third takes advantage of the multi-generational LRU to create a better picture of what a process's working set actually is.
corbet

Security updates for Monday

2 év 7 hónap óta
Security updates have been issued by Fedora (python2.7), SUSE (ca-certificates-mozilla, libksba, and ovmf), and Ubuntu (linux, linux-aws, linux-aws-5.4, linux-gcp, linux-gcp-5.4, linux-gke, linux-gkeop, linux-hwe-5.4, linux-ibm, linux-ibm-5.4, linux-kvm, linux-oracle, linux-oracle-5.4, linux-raspi, linux-raspi-5.4, linux, linux-aws, linux-aws-hwe, linux-azure, linux-azure-4.15, linux-dell300x, linux-gcp, linux-gcp-4.15, linux-hwe, linux-kvm, linux-oracle, linux-raspi2, linux-snapdragon, linux, linux-aws, linux-kvm, linux-lowlatency, linux-raspi, linux, linux-gcp, linux-gke, linux-gkeop, linux-hwe-5.15, linux-ibm, linux-kvm, linux-lowlatency, linux-oracle, linux-raspi,, and linux-aws).
jake

Proxy-támogatást vezet be a WhatsApp

2 év 7 hónap óta

A WhatsApp azonnali üzenetküldő alkalmazás új Proxy-támogatás funkciója lehetővé teszi az Android és iOS felhasználóknak, hogy megkerüljék a kormányok által bevezetett internetes kommunikációra vonatkozó szigorú előírásokat és korlátozásokat. A funkció bevezetésére hónapokkal azután került sor, hogy Irán – a tüntetések hatására – korlátozta a WhatsApp és Instagram hozzáférést. A funkció amolyan közvetítőként szolgál a végfelhasználó […]

The post Proxy-támogatást vezet be a WhatsApp first appeared on Nemzeti Kibervédelmi Intézet.

NKI

Holnaptól végleg megszűnik a Windows 7 és a Windows 8.1 támogatása

2 év 7 hónap óta

2023. január 10-től nem kapnak biztonsági frissítéseket a Windows 7 Professional és Enterprise kiadásai, továbbá ezzel egyidőben a Windows 8.1 is eléri életciklusa végét. A még 2009 októberében piacra dobott Windows 7 operációs rendszer támogatása 2015 januárjában, majd a kiterjesztett támogatása 2020 januárjában ért véget, viszont az Extended Security Update (ESU) továbbra is biztosított biztonsági […]

The post Holnaptól végleg megszűnik a Windows 7 és a Windows 8.1 támogatása first appeared on Nemzeti Kibervédelmi Intézet.

NKI

Kernel prepatch 6.2-rc3

2 év 7 hónap óta
Linus has released 6.2-rc3 for testing. "Here we are, another week done, and things are starting to look a lot more normal after that very quiet holiday week that made rc2 so very small".
corbet

James Bottomley: Using SIP to Replace Mobile and Land Lines

2 év 7 hónap óta

If you read more than a few articles in my blog you’ve probably figured out that I’m pretty much a public cloud Luddite: I run my own cloud (including my own email server) and don’t really have much of my data in any public cloud. I still have public cloud logins: everyone wants to share documents with Google nowadays, but Google regards people who don’t use its services “properly” with extreme prejudice and I get my account flagged with a security alert quite often when I try to log in.

However, this isn’t about my public cloud phobia, it’s about the evolution of a single one of my services: a cloud based PBX. It will probably come as no surprise that the PBX I run is Asterisk on Linux but it may be a surprise that I’ve been running it since the early days (since 1999 to be exact). This is the story of why.

I should also add that the motivation for this article is that I’m unable to get a discord account: discord apparently has a verification system that requires a phone number and explicitly excludes any VOIP system, which is all I have nowadays. This got me to thinking that my choices must be pretty unusual if they’re so pejoratively excluded by a company whose mission is to “Create Space for Everyone to find Belonging”. I’m sure the suspicion that this is because Discord the company also offers VoIP services and doesn’t like the competition is unworthy.

Early Days

I’ve pretty much worked remotely in the US all my career. In the 90s this meant having three phone lines (These were actually physical lines into the house): one for the family, one for work and one for the modem. When DSL finally became a thing and we were running a business, the modem was replaced by a fax machine. The minor annoyance was knowing which line was occupied but if line 1 is the house and line 2 the office, it’s not hard. The big change was unbundling. This meant initially the call costs to the UK through the line provider skyrocketed and US out of state rates followed. The way around this was to use unbundled providers via dial-around (a prefix number), but finding the cheapest was hard and the rates changed almost monthly. I needed a system that could add the current dial-around prefix for the relevant provider automatically. The solution: asterisk running on a server in the basement with two digium FX cards for the POTS lines (fax facility now being handled by asterisk) and Aastra 9113i SIP phones wired over the house ethernet with PoE injectors. Some fun jiggery pokery with asterisk busy lamp feature allowed the lights on the SIP phone to indicate busy lines and extensions.conf could be programmed to keep the correct dial-around prefix. For a bonus, asterisk can be programmed to do call screening, so now if the phone system doesn’t recognize your number you get told we don’t accept solicitation calls and to hang up now, otherwise press 0 to ring the house phone … and we’ve had peaceful dinner times ever after. It was also somewhat useful to have each phone in the house on its own PBX extension so people could call from the living room to my office without having to yell.

Enter SIP Trunking

While dial-arounds worked successfully for a few years, they always ended with problems (usually signalled by a massive phone bill) and a new dial-around was needed. However by 2007 several companies were offering SIP trunking over the internet. The one I chose (Localphone, a UK based company) was actually a successful ring back provider before moving into SIP. They offered a pay as you go service with phone termination in whatever country you were calling. The UK and US rates were really good, so suddenly the phone bills went down and as a bonus they gave me a free UK incoming number (called a DID – Direct Inward Dialing) which family and friends in the UK could call us on at local UK rates. Pretty much every call apart from local ones was now being routed over the internet, although most incoming calls, apart for those from the UK, were still over the POTS lines.

The beginning of Mobile (For Me)

I was never really a big consumer of mobile phones, but that all changed in 2009 when google presented all kernel developers with a Nexus One. Of course, they didn’t give us SIM cards to go with it, so my initial experiments were all over wifi. I soon had CyanogenMod installed and found a SIP client called Sipdroid. This allowed me to install my Nexus One as a SIP extension on the house network. SIP calls over 2G data were not very usable (the bandwidth was too low), but implementing multiple codecs and speex support got it to at least work (and is actually made me an android developer … scratching my own itch again). The bandwidth problems on 2G evaporated on 3G and SIP became really usable (although I didn’t have a mobile “plan”, I did use pay-as-you-go SIMs while travelling). It already struck me that all you really needed the mobile network for was data and then all calls could simply travel to a SIP provider. When LTE came along it seemed to be confirming this view because IP became the main communication layer.

I suppose I should add that I used the Nexus One long beyond its design life, even updating its protocol stack so it kept working. I did this partly because it annoyed certain people to see me with an old phone (I have a set of friends who were very amused by this and kept me supplied with a stock of Nexus One phones in case my old one broke) but mostly because of inertia and liking small phones.

SIP Becomes My Only Phone Service

In 2012, thanks to a work assignment, we relocated from the US to London. Since these moves take a while, I relocated the in-house PBX machine to a dedicated server in Los Angeles (my nascent private cloud), ditched the POTS connections and used the UK incoming number as our primary line that could be delivered to us while we were in temporary accommodation as well as when we were in our final residence in London. This did have the somewhat inefficient result that when you called from the downstairs living room to the upstairs office, the call was routed over an 8,000 mile round trip from London to Los Angeles and back, but thanks to internet latency improvements, you couldn’t really tell. The other problem was that the area code I’d chosen back in 2007 was in Whitby, some 200 Miles north of London but fortunately this didn’t seem to be much of an issue except for London Pizza delivery places who steadfastly refused to believe we lived locally.

When the time came in 2013 to move back to Seattle in the USA, the adjustment was simply made by purchasing a 206 area code DID and plugging it into the asterisk system and continued using a fully VoIP system based in Los Angeles. Although I got my incoming UK number for free, being an early service consumer, renting DIDs now costs around $1 per month depending on your provider.

SIP and the Home Office

I’ve worked remotely all my career (even when in London). However, I’ve usually worked for a company with a physical office setup and that means a phone system. Most corporate PBX’s use SIP under the covers or offer a SIP connector. So, by dint of finding the PBX administrator I’ve usually managed to get a SIP extension that will simply plug into my asterisk PBX. Using correct dial plan routing (and a prefix for outbound calling), the office number usually routes to my mobile and desk phone, meaning I can make and receive calls from my office number wherever in the world I happen to be. For those who want to try this at home, the trick is to find the phone system administrator; if you just ask the IT department, chances are you’ll simply get a blanket “no” because they don’t understand it might be easy to do and definitely don’t want to find out.

Evolution to Fully SIP (Data Only) Mobile

Although I said above that I maintained a range of in-country Mobile SIMs, this became less true as the difficulty in running in-country SIMs increased (most started to insist you add cash or use them fairly regularly). When COVID hit in 2020, and I had no ability to travel, my list of in-country SIMs was reduced to one from 3 UK largely because they allowed you to keep your number provided you maintained a balance (and they had a nice internet roaming agreement which meant you paid UK data rates in a nice range of countries). The big problem giving up a mobile number was no text messaging when travelling (SMS). For years I’ve been running a xmpp server, but the subset of my friends who have xmpp accounts has always been under 10% so it wasn’t very practical (actually, this is somewhat untrue because I wrote an xmpp to google chat bridge but the interface became very impedance mismatched as Google moved to rich media).

The major events that got me to move away from xmpp and the Nexus One were the shutdown of the 3G network in the US and the viability of the Matrix federated chat service (the Matrix android client relied on too many modern APIs ever to be backported to the version of android that ran on the Nexus One). Of the available LTE phones, I chose the Pixel-3 as the smallest and most open one with the best price/performance (and rapidly became acquainted with the fact that only some of them can actually be rooted) and LineageOS 17.1 (Android 10). The integration of SIP with the Dialer is great (I can now use SIP on the car’s bluetooth, yay!) but I rapidly ran into severe bugs in the Google SIP implementation (which hasn’t been updated for years). I managed to find and fix all the bugs (or at least those that affected me most, repositories here; all beginning with android_ and having the jejb-10 branch) but that does now mean I’m stuck on Android 10 since Google ripped SIP out in Android 12.

For messaging I adopted matrix (Apart from the Plumbers Matrix problem, I haven’t really written about it since matrix on debian testing just works out of the box) and set up bridges to Signal, Google Chat, Slack and WhatsApp (The WhatsApp one requires you be running WhatsApp on your phone, but I run mine on an Android VM in my cloud) all using the 3 UK Sim number where they require a mobile number confirmation. The final thing I did was to get a universal roaming data SIM and put it in my phone, meaning I now rely on matrix for messaging and SIP for voice when I travel because the data SIM has no working mobile number at all (either for voice or SMS). In many ways, this is no hardship: I never really had a permanent SMS number when travelling because of the use of in-country SIMs, so no-one has a number for me they rely on for SMS.

Conclusion and Problems

Although I implied above I can’t receive SMS, that’s not quite true: one of my VOIP numbers does accept SMS inbound and is able to send outbound, the problem is that it doesn’t come over the SIP MESSAGE protocol, but instead goes to a web page in the provider backend, making it inconvenient to use and meaning I have to know the message is coming (although I do use it for things like Delta Boarding passes, which only send the location of the web page to receive pkpasses over SMS). However, this isn’t usually a problem because most people I know have moved on from SMS to rich messaging over one of the protocols I have (and if one came along with a new protocol, well I can install a bridge for that).

In terms of SIP over an IP substrate giving rise to unbundled services, I could claim to be half right, since most of the modern phone like services have a SIP signalling core. However, the unbundling never really came about: the silo provider just moved from landline to mobile (or a mobile resale service like Google Fi). Indeed, today, if you give anyone your US phone number they invariably assume it is a mobile (and then wonder why you don’t reply to their SMS messages). This mobile assumption problem can be worked around by emphasizing “it’s a landline” every time you give out your VOIP number, but people don’t always retain the information.

So what about the future? I definitely still like the way my phone system works … having a single number for the house which any household member can answer from anywhere and side numbers for travelling really suits me, and I have the technical skills to maintain it indefinitely (provided the SIP trunking providers sill exist), but I can see the day coming where the Discord intolerance of non-siloed numbers is going to spread and most silos will require non-VOIP phone numbers with the same prejudice, thus locking people who don’t comply out in much the same way as it’s happening with email now; however, hopefully that day for VoIP is somewhat further off.

Three stable kernels; 4.9 at an end

2 év 7 hónap óta
The 6.1.4, 6.0.18, and 4.9.337 stable kernel updates have been released; each contains another set of important fixes. Greg Kroah-Hartman has also let it be known that 4.9.337 is the end of the line for the 4.9 kernel, which was released just over six years ago. "This kernel is now END-OF-LIFE and you should move to 4.14.y at the least, 6.1.y is the better option."
corbet

Matthew Garrett: Changing firmware config that doesn't want to be changed

2 év 7 hónap óta
Update: There's actually a more detailed writeup of this here that I somehow missed. Original entry follows:

Today I had to deal with a system that had an irritating restriction - a firmware configuration option I really wanted to be able to change appeared as a greyed out entry in the configuration menu. Some emails revealed that this was a deliberate choice on the part of the system vendor, so that seemed to be that. Thankfully in this case there was a way around that.

One of the things UEFI introduced was a mechanism to generically describe firmware configuration options, called Visual Forms Representation (or VFR). At the most straightforward level, this lets you define a set of forms containing questions, with each question associated with a value in a variable. Questions can be made dependent upon the answers to other questions, so you can have options that appear or disappear based on how other questions were answered. An example in this language might be something like:
CheckBox Prompt: "Console Redirection", Help: "Console Redirection Enable or Disable.", QuestionFlags: 0x10, QuestionId: 53, VarStoreId: 1, VarStoreOffset: 0x39, Flags: 0x0
In which question 53 asks whether console redirection should be enabled or disabled. Other questions can then rely on the answer to question 53 to influence whether or not they're relevant (eg, if console redirection is disabled, there's no point in asking which port it should be redirected to). As a checkbox, if it's set then the value will be set to 1, and 0 otherwise. But where's that stored? Earlier we have another declaration:
VarStore GUID: EC87D643-EBA4-4BB5-A1E5-3F3E36B20DA9, VarStoreId: 1, Size: 0xF4, Name: "Setup"
A UEFI variable called "Setup" and with GUID EC87D643-EBA4-4BB5-A1E5-3F3E36B20DA9 is declared as VarStoreId 1 (matching the declaration in the question) and is 0xf4 bytes long. The question indicates that the offset for that variable is 0x39. Rewriting Setup-EC87D643-EBA4-4BB5-A1E5-3F3E36B20DA9 with a modified value in offset 0x39 will allow direct manipulation of the config option.

But how do we get this data in the first place? VFR isn't built into the firmware directly - instead it's turned into something called Intermediate Forms Representation, or IFR. UEFI firmware images are typically in a standardised format, and you can use UEFITool to extract individual components from that firmware. If you use UEFITool to search for "Setup" there's a good chance you'll be able to find the component that implements the setup UI. Running IFRExtractor-RS against it will then pull out any IFR data it finds, and decompile that into something resembling the original VFR. And now you have the list of variables and offsets and the configuration associated with them, even if your firmware has chosen to hide those options from you.

Given that a bunch of these config values may be security relevant, this seems a little concerning - what stops an attacker who has access to the OS from simply modifying these variables directly? UEFI avoids this by having two separate stages of boot, one where the full firmware ("Boot Services") is available, and one where only a subset ("Runtime Services") is available. The transition is triggered by the OS calling ExitBootServices, indicating the handoff from the firmware owning the hardware to the OS owning the hardware. This is also considered a security boundary - before ExitBootServices everything running has been subject to any secure boot restrictions, and afterwards applications can do whatever they want. UEFI variables can be flagged as being visible in both Boot and Runtime Services, or can be flagged as Boot Services only. As long as all the security critical variables are Boot Services only, an attacker should never be able to run untrusted code that could alter them.

In my case, the firmware option I wanted to alter had been enclosed in "GrayOutIf True" blocks. But the questions were still defined and the code that acted on those options was still present, so simply modifying the variables while still inside Boot Services gave me what I wanted. Note that this isn't a given! The presence of configuration options in the IFR data doesn't mean that anything will later actually read and make use of that variable - a vendor may have flagged options as unavailable and then removed the code, but never actually removed the config data. And also please do note that the reason stuff was removed may have been that it doesn't actually work, and altering any of these variables risks bricking your hardware in a way that's extremely difficult to recover. And there's also no requirement that vendors use IFR to describe their configuration, so you may not get any help here anyway.

In summary: if you do this you may break your computer. If you don't break your computer, it might not work anyway. I'm not going to help you try to break your computer. And I didn't come up with any of this, I just didn't find it all written down in one place while I was researching it.

comments

Matthew Garrett: Asking ChatGPT to write my security-sensitive code for me

2 év 7 hónap óta
I have a patchset that makes it safe to use hibernation under Linux even in a secure boot world but it relies on preventing userland from using one of the TPM PCRs[1] that would otherwise be available to it. TPM 2 devices support emulating PCRs in NVRAM, which would obviously be beneficial in not taking away a scare resource, but the docs suggest there's no way to tie a key generation to an NVRAM value which makes this more complicated.

So, why not ask a computer to do this for me? I asked ChatGPT to write me some code that would bind a TPM key to an NVRAM value. After a couple of false starts it told me:To bind an encryption key to the value of a TPM NV index, you can use the TPM2_NV_DefineSpace command to define an NV index with the TPMA_NV_BIND attribute. Woo! That sounds perfect. Only one problem - I can't actually find the TPMA_NV_BIND attribute defined anywhere in the spec. Well, ask the AI again.

Here is the definition of TPMA_NV_BIND from the TPM 2.0 specification:
TPMA_NV_BIND (BIT 17) If SET, the contents of the NV Index are bound to the platform hierarchy.

Ok, that sounds convincing. Where is it in the spec?

The definition of TPMA_NV_BIND is on page 126 of the TPM 2.0 specification, in section 9.7.1 "TPMA_NV".

Huh. Nope. Page 126 says nothing about this. Section 9.7.1 says nothing about this. The TPMA_NV bits are actually described on page 168 of volume 2 of the spec, in section 13.4. Bit 17 is TPMA_NV_OWNERREAD. TPMA_NV_BIND does not appear in the spec anywhere. I told the AI that.

I apologize for the error in my previous response. You are correct that the TPMA_NV_BIND attribute does not appear in the TPM 2.0 specification.

To bind an encryption key to the value of a TPM NV index, you can use the TPM2_NV_DefineSpace command with the TPMA_NV_BIND attribute.

I'm not afraid of being unemployed in the near future.

[1] "Platform Configuration Registers" - a modern TPM has 24 of these. When something security sensitive happens, you generate a hash of that event and pass it to the TPM. The TPM appends that to an existing PCR value and then hashes that concatenated value and sets the PCR to that. This means the PCR value depends not only on the values provided, but also the order they're provided in. Various TPM operations can be made conditional on the PCR values meeting specific criteria.

comments

Linux Plumbers Conference: LPC 2022 Attendee Survey Summary

2 év 7 hónap óta

We had 206 responses to the Linux Plumbers survey in 2022, which, given the total number of in person conference participants of 401, and virtual participants of 320, has provided high confidence in the feedback.   Overall there were about 89% of those registered, either showed up as in person or virtual.   As this was the first time we’ve tried to do this type of hybrid event, the feedback has been essential as we start planning for something similar in 2023.  One piece of input, we’ll definitely be incorporating for next year is to have separate surveys for in person and virtual attendees!  So a heartfelt “thank you” to everyone who participated in this survey and waded through the non relevant questions to share their experience!   

Overall: 91.8% of respondents were positive about the event, with 6.3% as neutral and 1.9% were dissatisfied. 80.1% indicated that the discussions they participated in helped resolve problems.  The BOF track was popular and we’re looking to include it again in 2023.   Due to the fact we were having our first in person since the pandemic started, we did this event as a hybrid event with reduced in person registration compared to prior years, as we were unsure how many would be willing to travel and our venue’s capacity.   The conference sold out of regular tickets very quickly after opening up registration though, so we set up a waiting list.  With some the travel conditions and cancelations, we were able to work through the daunting waiting list, and offer spots to all of those on the list by the conference date.  Venue capacity is something we’re looking closely at for next year and will outline the plan when the CFP opens early this year.

Based on feedback from prior years, we videotaped all of the sessions, and the videos are now posted. There are 195 videos from the conference! The committee has also linked them to the detailed schedule and clicking on the video link in the presentation materials section of any given talk or discussion. 72% of respondents plan to watch them to clarify points and another 10% are planning to watch them to catch up on sessions that they were not able to attend. 

Venue: In general, 45.6% of respondents considered the venue size to be a good match, but a significant portion would have preferred it to be bigger (47%) as well. The room size was considered effective for participation by 78.6% of the respondents.

Content: In terms of track feedback, Linux Plumbers Refereed track and Kernel Summit track were indicated as very relevant by almost all respondents who attended. The BOFs track was positively received and will continue.   The hallway track continues to be regarded as most relevant, and appreciated. We will continue to evaluate options for making private meeting and hack rooms available for groups who need to meet onsite.

Communication:  The emails from the committee continue to be positively received.  We were able to incorporate some of the suggestions from prior surveys, and are continuing to look for options to make the hybrid event communications between in person and virtual attendees work better.  

Events: Our evening events are feeling the pressure from the number of attendees especially with the other factors from the pandemic.   The first night event had more issues than the closing event and we appreciate the constructive suggestions in the write-in comments.  The survey was still positive about the events overall,   so we’ll see what we can do make this part of the “hallway track” more effective for everyone next year.

There were lots of great suggestions to the “what one thing would you like to see changed” question, and the program committee has met to discuss them. Once a venue is secured, we’ll be reviewing them again to see what is possible to implement this coming year.

Thank you again to the participants for their input and help on improving the Linux Plumbers Conference.   The conference is planned to be in North America in the October/November timeframe for 2023.  As soon as we secure a venue, dates and location information will be posted in a blog by the committee chair,  Christian Brauner.

[$] A vDSO implementation of getrandom()

2 év 7 hónap óta
Most developers probably do not see the generation of random numbers as being a performance bottleneck for their programs, but there are seemingly exceptions. Over the last few years, Jason Donenfeld has brought a new level of energy to the development of the kernel's random-number generator; he is now directing his efforts toward improving performance for user space with this patch series that provides an implementation of the getrandom() system call in the kernel's "virtual dynamic shared object" (vDSO) area. The result is, indeed, better performance, but not all developers see this benefit as being worth the additional complexity required to achieve it.
corbet

Security updates for Friday

2 év 7 hónap óta
Security updates have been issued by Debian (libetpan and smarty3), SUSE (libksba, rpmlint-mini, tcl, and xrdp), and Ubuntu (curl, firefox, and linux-oem-5.14).
jake

Hutterer: X servers no longer allow byte-swapped clients

2 év 7 hónap óta
Peter Hutterer writes about the disabling of support for byte-swapped clients in the X.org server and the reasons why this was done.

These days, encountering a Big Endian host is increasingly niche, letting it run an X client that connects to your local little-endian X server is even more niche. I think the only regular real-world use-case for this is running X clients on an s390x, connecting to your local intel-ish (and thus little endian) workstation. Not something most users do on a regular basis. So right now, the byte-swapping code is mainly a free attack surface that 99% of users never actually use for anything real. So... let's not do that?

corbet

[$] Per-extent encrypted keys for fscrypt

2 év 7 hónap óta
The kernel's fscrypt subsystem enables filesystems to store files and directories in encrypted form, protecting them against offline attacks. A few filesystems support encryption with fscrypt currently, but Btrfs is an exception, despite a number of attempts to add this feature. The problem is that, as so often seems to be the case, Btrfs works differently and does not fit well with one of the key assumptions in the design of fscrypt. With this patch series, Sweet Tea Dorminy is working to enhance fscrypt to be a better fit for filesystems like Btrfs.
corbet

Security updates for Thursday

2 év 7 hónap óta
Security updates have been issued by Fedora (binwalk), Oracle (kernel and webkit2gtk3), Red Hat (webkit2gtk3), Slackware (vim), and Ubuntu (libksba and nautilus).
jake

[$] Adding system calls for Linux security modules

2 év 7 hónap óta
The Linux security module (LSM) subsystem has long had limitations on which modules could be combined in a given running kernel. Some parts of the problem have been solved over the years—"smaller" LSMs can be combined at will with a single, more complex LSM—but combining (or "stacking") SELinux with, say, Smack or AppArmor has never been possible. Back in October, we looked at the most recent attempt to add that ability, which resulted in patches to add two new system calls for LSM. By the end of December, the number of new system calls had risen to three.
jake