Powell negyedfokú-ra nem találok infót, de ahogy a videóban mutatom, sokkal komplexebb kimenetet kezelek. Generálok pár random egyenletet és megoldását:
Ez 8-ad fokú és van ismeretlen kitevőben is, stb:
x4 + 2 - 16 - x4 - exp( x5 ) + 15 - 9 * x1 ** x2 + x1 ** 8 - 10 + x2 * 16 + x3 = 10
x1 = 1.3001637756974223
x2 = 1.6642987003611736
x3 = 5.340875307294438
x4 = 9.105743895300119
x5 = 1.9747200303974215
=> "error 0 time 0.362s"
19-ed fokú:
x2 - 8 + asinh( x2 ) + 24 * 18 - x4 + 5 + exp( x5 ) ** cosh( x2 ) ** 19 - 2 * 5 - x3 + x2 * x5 ** 4 * 25 + 2 * x3 - cosh( x3 ) * x5 * x5 - x4 + x2 + sin( x1 ) = 16
x1 = 23.1180816912583
x2 = -7.174630236873243
x3 = 2.568593483660327
x4 = -9.809614574398552
x5 = -1.2201098012606149
=> "error 0 time 5.72s"
22 - 27 * x2 - 5 + 16 * 8 - 20 * 9 * x3 + x2 * x5 - tan( x6 ) - x6 - 19 - 9 - x1 - sinh( x2 ) ** 11 - sinh( x5 ) + 20 - x6 ** 30 + asinh( x1 ) ** exp( x4 ) - x2 ** tanh( x6 ) - x6 + x5 - x1 = 29
x1 = 0.2584124611175178
x2 = 0.21058379187327173
x3 = 0.567076578237669
x4 = -0.5251906679102831
x5 = -0.5263107026525904
x6 = -0.862545259195803
=> "error 0 time 2.26s"
cosh( x4 ) * 4 - 5 + cos( x5 ) + 13 + 21 + x1 - 10 * 18 * asinh( x6 ) * 21 + 21 - x4 + x5 ** 6 * x6 - 3 - x4 ** x3 ** x6 + x6 ** x4 - cos( x5 ) + 2 + x4 = 10
x1 = -0.0004141372612761436
x3 = 0.034457028654801714
x4 = 0.08270889079026573
x5 = 0.09207688128067658
x6 = 0.011538274913461136
=> "error 0 time 0.549s"